A Markov random field-regulated Pitman-Yor process prior for spatially constrained data clustering
نویسنده
چکیده
In this work, we propose a Markov random field-regulated Pitman–Yor process (MRF-PYP) prior for nonparametric clustering of data with spatial interdependencies. The MRF-PYP is constructed by imposing a Pitman–Yor process over the distribution of the latent variables that allocate data points to clusters (model states), the discount hyperparameter of which is regulated by an additionally postulated simplified (pointwise) Markov random field (Gibbsian) distribution with a countably infinite number of states. Further, based on the stick-breaking construction of the Pitman–Yor process, we derive an efficient truncated variational Bayesian algorithm for model inference. We examine the efficacy of our approach by considering an unsupervised image segmentation application using a realworld dataset. We show that our approach completely outperforms related methods from the field of Bayesian nonparametrics, including the recently proposed infinite hidden Markov random field model and the Dirichlet process prior. & 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
A Spatially-Constrained Normalized Gamma Process for Data Clustering
In this work, we propose a novel nonparametric Bayesian method for clustering of data with spatial interdependencies. Specifically, we devise a novel normalized Gamma process, regulated by a simplified (pointwise) Markov random field (Gibbsian) distribution with a countably infinite number of states. As a result of its construction, the proposed model allows for introducing spatial dependencies...
متن کاملThe Kernel Pitman-Yor Process
In this work, we propose the kernel Pitman-Yor process (KPYP) for nonparametric clustering of data with general spatial or temporal interdependencies. The KPYP is constructed by first introducing an infinite sequence of random locations. Then, based on the stick-breaking construction of the Pitman-Yor process, we define a predictor-dependent random probability measure by considering that the di...
متن کاملParallel Markov Chain Monte Carlo for Pitman-Yor Mixture Models
The Pitman-Yor process provides an elegant way to cluster data that exhibit power law behavior, where the number of clusters is unknown or unbounded. Unfortunately, inference in PitmanYor process-based models is typically slow and does not scale well with dataset size. In this paper we present new auxiliary-variable representations for the Pitman-Yor process and a special case of the hierarchic...
متن کاملA Hierarchical Pitman-Yor Process HMM for Unsupervised Part of Speech Induction
In this work we address the problem of unsupervised part-of-speech induction by bringing together several strands of research into a single model. We develop a novel hidden Markov model incorporating sophisticated smoothing using a hierarchical Pitman-Yor processes prior, providing an elegant and principled means of incorporating lexical characteristics. Central to our approach is a new type-ba...
متن کاملGeneralized Pólya Urn for Time-Varying Pitman-Yor Processes
This article introduces a class of first-order stationary time-varying Pitman-Yor processes. Subsuming our construction of time-varying Dirichlet processes presented in (Caron et al., 2007), these models can be used for time-dynamic density estimation and clustering. Our intuitive and simple construction relies on a generalized Pólya urn scheme. Significantly, this construction yields marginal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 46 شماره
صفحات -
تاریخ انتشار 2013